19 research outputs found

    Cryptography in a quantum world

    Get PDF

    Efficient unitarity randomized benchmarking of few-qubit Clifford gates

    Get PDF
    Unitarity randomized benchmarking (URB) is an experimental procedure for estimating the coherence of implemented quantum gates independently of state preparation and measurement errors. These estimates of the coherence are measured by the unitarity. A central problem in this experiment is relating the number of data points to rigorous confidence intervals. In this work we provide a bound on the required number of data points for Clifford URB as a function of confidence and experimental parameters. This bound has favorable scaling in the regime of near-unitary noise and is asymptotically independent of the length of the gate sequences used. We also show that, in contrast to standard randomized benchmarking, a nontrivial number of data points is always required to overcome the randomness introduced by state preparation and measurement errors even in the limit of perfect gates. Our bound is sufficiently sharp to benchmark small-dimensional s

    How to transform graph states using single-qubit operations: computational complexity and algorithms

    Get PDF
    Graph states are ubiquitous in quantum information with diverse applications ranging from quantum network protocols to measurement based quantum computing. Here we consider the question whether one graph (source) state can be transformed into another graph (target)state,using a specific set of quantum operations (LC+LPM+CC): single-qubit Clifford operations(LC), single-qubit Pauli measurements (LPM) and classical communication (CC) between sites holding the individual qubits. This question is of interest for effective routing or state preparation decisions in a quantum network or distributed quantum processor and also in the design of quantum repeater schemes and quantum error-correction codes. We first show that deciding whether a graph state|G〉can be transformed into another graph state|G′〉using LC+LPM+CC is NP-complete, which was previously not known. We also show that the problem remains NP-complete even if|G′〉is restricted to be the GHZ-state. However, we also provide efficient algorithms for two situations of practical interest. Our results make use of the insight that deciding whether a graph state|G〉can be transformed to another graph state|G′〉is equivalent to a known decision problem in graph theory, namely the problem of deciding whether a graph G′ is a vertex-minor of a graph G. The computational complexity of the vertex-minor problem was prior to this paper an open question in graph theory. We prove that the vertex-minor problem is NP-complete by relating it to a new decision problem on 4-regular graphs which we call the semi-ordered Eulerian tour problem

    Transforming graph states to Bell-pairs is NP-Complete

    Get PDF
    Critical to the construction of large scale quantum networks, i.e. a quantum internet, is the development of fast algorithms for managing entanglement present in the network. One fundamental building block for a quantum internet is the distribution of Bell pairs between distant nodes in the network. Here we focus on the problem of transforming multipartite entangled states into the tensor product of bipartite Bell pairs between specific nodes using only a certain class of local operations and classical communication. In particular we study the problem of deciding whether a given graph state, and in general a stabilizer state, can be transformed into a set of Bell pairs on specific vertices using only single-qubit Clifford operations, single-qubit Pauli measurements and classical communication. We prove that this problem is NP-Complete

    Counting single-qubit Clifford equivalent graph states is #â„™-complete

    Get PDF
    Graph states, which include for example Bell states, GHZ states and cluster states, form a well-known class of quantum states with applications ranging from quantum networks to error-correction. Deciding whether two graph states are equivalent up to single-qubit Clifford operations is known to be decidable in polynomial time and have been studied both in the context of producing certain required states in a quantum network but also in relation to stabilizer codes. The reason for the latter this is that single-qubit Clifford equivalent graph states exactly corresponds to equivalent stabilizer codes. We here consider the computational complexity of, given a graph state |G>, counting the number of graph states, single-qubit Clifford equivalent to |G>. We show that this problem is #P-Complete. To prove our main result we make use of the notion of isotropic systems in graph theory. We review the definition of isotropic systems and point out their strong relation to graph states. We believe that these isotropic systems can be useful beyond the results presented in this paper

    Composable security in the bounded-quantum-storage model

    No full text
    We present a simplified framework for proving sequential composability in the quantum setting. In particular, we give a new, simulation-based, definition for security in the bounded-quantum-storage model, and show that this definition allows for sequential composition of protocols. Damgard et al. (FOCS '05, CRYPTO '07) showed how to securely implement bit commitment and oblivious transfer in the bounded-quantum-storage model, where the adversary is only allowed to store a limited number of qubits. However, their security definitions did only apply to the standalone setting, and it was not clear if their protocols could be composed. Indeed, we first give a simple attack that shows that these protocols are not composable without a small refinement of the model. Finally, we prove the security of their randomized oblivious transfer protocol in our refined model. Secure implementations of oblivious transfer and bit commitment then follow easily by a (classical) reduction to randomized oblivious transfer

    Composable Security in the Bounded-Quantum-Storage Model

    No full text
    We give a new, simulation-based, definition for security in the bounded-quantum-storage model, and show that this definition allows for sequential composition of protocols. Damgård et a

    Higher entropic uncertainty relations for anti-commuting observables

    No full text
    Uncertainty relations lie at the very core of quantum mechanics, and form the cornerstone of essentially all quantum cryptographic applications. In particular, they play an important role in cryptographic protocols in the bounded-quantum-storage model, where proving the security of all existing protocols ultimately reduces to bounding such relations. Yet, very little is known about such uncertainty relations for more than two measurements. Here, we prove optimal entropic uncertainty relations for anti-commuting binary observables for the Shannon entropy, and nearly optimal relations for the collision entropy. Our results have immediate applications to quantum cryptography
    corecore